Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.572
Filtrar
1.
An Acad Bras Cienc ; 96(1): e20230327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597490

RESUMO

Aquatic macrophytes are the main autochthonous component of primary production in the Amazon Basin. Floating meadows of these plants support habitats with highly diverse animal communities. Fishes inhabiting these habitats have been assumed to use a broad range of food items and compose a particular food web. We employed carbon (δ13C) and nitrogen (δ15N) stable isotope analysis to draw the trophic structure of these habitats and to trace the energy flow by its trophic levels. Fishes and other animals from 18 independent macrophyte meadows of a floodplain lake of the Solimões River (Amazonia, Brazil) were analyzed. The food web of macrophyte meadows consists of four trophic levels above autotrophic sources. In general, primary consumers exhibited a broader range of food sources than the upper trophic levels. Some fish species depended on a large number of food sources and at the same time are consumed by several predators. The energy transfer from one trophic level to the next was then mainly accomplished by these species concentrating a high-energy flux and acting as hubs in the food web. The broad range of δ13C values observed indicates that the organisms living in the macrophyte meadows utilize a great diversity of autotrophic sources.


Assuntos
Pradaria , Lagos , Animais , Lagos/química , Ecossistema , Cadeia Alimentar , Peixes , Transferência de Energia
2.
Proc Biol Sci ; 291(2021): 20240415, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628122

RESUMO

Artificial light at night (ALAN) is a growing threat to coastal habitats, and is likely to exacerbate the impacts of other stressors. Kelp forests are dominant habitats on temperate reefs but are declining due to ocean warming and overgrazing. We tested the independent and interactive effects of ALAN (dark versus ALAN) and warming (ambient versus warm) on grazing rates and gonad index of the sea urchin Centrostephanus rodgersii. Within these treatments, urchins were fed either 'fresh' kelp or 'treated' kelp. Treated kelp (Ecklonia radiata) was exposed to the same light and temperature combinations as urchins. We assessed photosynthetic yield, carbon and nitrogen content and C : N ratio of treated kelp to help identify potential drivers behind any effects on urchins. Grazing increased with warming and ALAN for urchins fed fresh kelp, and increased with warming for urchins fed treated kelp. Gonad index was higher in ALAN/ambient and dark/warm treatments compared to dark/ambient treatments for urchins fed fresh kelp. Kelp carbon content was higher in ALAN/ambient treatments than ALAN/warm treatments at one time point. This indicates ocean warming and ALAN may increase urchin grazing pressure on rocky reefs, an important finding for management strategies.


Assuntos
Cadeia Alimentar , Kelp , Animais , Poluição Luminosa , Ecossistema , Ouriços-do-Mar , Carbono
3.
Sci Total Environ ; 927: 172152, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575012

RESUMO

Mercury (Hg) is a ubiquitous and pervasive environmental contaminant with detrimental effects on wildlife, which originates from both natural and anthropogenic sources. Its distribution within ecosystems is influenced by various biogeochemical processes, making it crucial to elucidate the factors driving this variability. To explore these factors, we employed an innovative method to use northern gannets (Morus bassanus) as biological samplers of regurgitated fish in the Gulf of St. Lawrence. We assessed fish total Hg (THg) concentrations in relation to their geographical catch location as well as to pertinent biotic and anthropogenic factors. In small fish species, trophic position, calculated from compound-specific stable nitrogen isotopes in amino acids, emerged as the most influential predictor of THg concentrations. For large fish species, THg concentrations were best explained by δ13C, indicating higher concentrations in inshore habitats. No anthropogenic factors, such as pollution, shipping traffic, or coastal development, were significantly related to THg concentrations in fish. Moreover, previously published THg data in mussels sampled nearby were positively linked with THg concentrations in gannet prey, suggesting consistent mercury distribution across trophic levels in the Gulf of St. Lawrence. Our findings point to habitat-dependent variability in THg concentrations across multiple trophic levels. Our study could have many potential uses in the future, including the identification of vulnerability hotspots for fish populations and their predators, or assessing risk factors for seabirds themselves by using biologically relevant prey.


Assuntos
Monitoramento Ambiental , Peixes , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Animais , Monitoramento Ambiental/métodos , Peixes/metabolismo , Poluentes Químicos da Água/análise , Quebeque , Cadeia Alimentar , Ecossistema
4.
Sci Total Environ ; 927: 172094, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575036

RESUMO

Mangrove estuaries are an important land-sea transitional ecosystem that is currently under various pollution pressures, while there is a lack of research on per- and polyfluoroalkyl substances (PFAS) in the organisms of mangrove estuaries. In this study, we investigated the distribution and seasonal variation of PFAS in the tissues of organisms from a mangrove estuary. The PFAS concentrations in fish tissues varied from 0.45 ng/g ww to 17.67 ng/g ww and followed the order of viscera > head > carcass > muscle, with the highest tissue burden found in the fish carcass (39.59 ng). The log BAF values of PFDoDA, PFUnDA, and PFDA in the whole fish exceeded 3.70, indicating significant bioaccumulation. The trophic transfer of PFAS in the mangrove estuary food web showed a dilution effect, which was mainly influenced by the spatial heterogeneity of PFAS distribution in the estuarine environment, and demonstrated that the gradient dilution of PFAS in the estuary habitat environment can disguise the PFAS bio-magnification in estuarine organisms, and the larger the swimming ranges of organisms, the more pronounced the bio-dilution effect. The PFOA-equivalent HRs of category A and B fish were 3.48-5.17 and 2.59-4.01, respectively, indicating that mangrove estuarine residents had a high PFAS exposure risk through the intake of estuarine fish.


Assuntos
Bioacumulação , Monitoramento Ambiental , Estuários , Peixes , Cadeia Alimentar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes/metabolismo , Áreas Alagadas , Fluorocarbonos/análise , Fluorocarbonos/metabolismo
5.
Sci Total Environ ; 927: 172235, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582125

RESUMO

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.


Assuntos
Monitoramento Ambiental , Peixes , Cadeia Alimentar , Microplásticos , Poluentes Químicos da Água , Animais , Peixes/fisiologia , Poluentes Químicos da Água/análise , Conteúdo Gastrointestinal/química , Plásticos/análise , Ecossistema
6.
Sci Total Environ ; 927: 172156, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588742

RESUMO

The variability and intrinsic mechanisms of oxidative stress induced by microplastics at different trophic levels in freshwater food chains are not well understood. To comprehensively assess the oxidative stress induced by polystyrene microplastics (PS-MPs) in freshwater food chains, the present study first quantified the oxidative stress induced by PS-MPs in organisms at different trophic levels using factorial experimental design and molecular dynamics methods. Then focuses on analyzing the variability of these responses across different trophic levels using mathematical statistical analysis. Notably, higher trophic level organisms exhibit diminished responses under PS-MPs exposure. Furthermore, the coexistence of multiple additives was found to mask these responses, with antioxidant plastic additives significantly influencing oxidative stress responses. Mechanism analysis using computational chemistry simulation determines that protein structure and amino acid characteristics are key factors driving PS-MPs induced oxidative stress variation in freshwater organisms at different nutrient levels. Increased hydrophobic additives induce protein helicalization and amino acid residue aggregation. This study systematically reveals the variability of biological oxidative stress response under different nutrient levels, emphasizing the pivotal role of chemical additives. Overall, this study offers crucial insights into PS-MPs' impact on oxidative stress responses in freshwater ecosystems, informing future environmental risk assessment.


Assuntos
Cadeia Alimentar , Água Doce , Microplásticos , Estresse Oxidativo , Poluentes Químicos da Água , Estresse Oxidativo/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Água Doce/química , Animais , Poliestirenos/toxicidade , Organismos Aquáticos/efeitos dos fármacos
7.
Bull Environ Contam Toxicol ; 112(4): 61, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602522

RESUMO

Total mercury (Hg) concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotopes were quantified among aquatic invertebrate and sediment samples collected from Keuka Lake in New York's Finger Lakes region to evaluate temporal and spatial variability in Hg bioaccumulation and trophic ecology among these lower trophic levels. Hg concentrations ranged from 6.3 to 158.8 ng/g (dry wt) across dreissenid mussel, zooplankton, and juvenile (< 10 mm) and adult (≥ 10 mm) mysid shrimp (Mysis diluviana) samples. Hg concentrations were higher in samples collected from the western basin in 2015 relative to those for samples collected from this basin in 2022 (p < 0.001). While no specific mechanisms could be identified to explain this difference, higher δ15N values for zooplankton collected in 2015 support conclusions regarding the role of zooplankton trophic status on Hg concentrations in these populations. Spatial patterns in Hg concentrations were of generally low variability among samples collected from the lake's east, west and south basins in 2022. Trophic positions as inferred by δ15N were represented by adult mysids > juvenile mysids > large zooplankton (≥ 500 µm) > dreissenid mussels ≥ small zooplankton (64-500 µm). Differences were evident among the regression slopes describing the relationships between sample Hg concentrations and δ15N values across the lake's three basins (p = 0.028). However, this was primarily attributed to high δ15N values measured in dreissenid mussels collected from the south basin in 2022. Biota sediment accumulation factors ranged from 0.2 to 2.3 and were highest for adult M. diluviana but mysid δ13C values generally supported a pelagic pathway of Hg exposure relative to benthic sediments. Overall, these results provide additional support regarding the contributions of lower trophic levels to Hg biomagnification in aquatic food-webs.


Assuntos
Cadeia Alimentar , Mercúrio , Animais , Bioacumulação , Lagos , Ecologia , Zooplâncton
8.
Proc Biol Sci ; 291(2021): 20232468, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654648

RESUMO

The interplay of host-parasite and predator-prey interactions is critical in ecological dynamics because both predators and parasites can regulate communities. But what is the prevalence of infected prey and predators when a parasite is transmitted through trophic interactions considering stochastic demographic changes? Here, we modelled and analysed a complex predator-prey-parasite system, where parasites are transmitted from prey to predators. We varied parasite virulence and infection probabilities to investigate how those evolutionary factors determine species' coexistence and populations' composition. Our results show that parasite species go extinct when the infection probabilities of either host are small and that success in infecting the final host is more critical for the survival of the parasite. While our stochastic simulations are consistent with deterministic predictions, stochasticity plays an important role in the border regions between coexistence and extinction. As expected, the proportion of infected individuals increases with the infection probabilities. Interestingly, the relative abundances of infected and uninfected individuals can have opposite orders in the intermediate and final host populations. This counterintuitive observation shows that the interplay of direct and indirect parasite effects is a common driver of the prevalence of infection in a complex system.


Assuntos
Cadeia Alimentar , Interações Hospedeiro-Parasita , Comportamento Predatório , Animais , Parasitos/fisiologia , Modelos Biológicos , Dinâmica Populacional
9.
J Hazard Mater ; 470: 134179, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565011

RESUMO

Microplastics (MPs) and fluoxetine are ubiquitous emerging pollutants in aquatic environments that may interact with each other due to the carrier effects of MPs, posing unpredictable risks to non-target organisms. However, limited studies have focused on the carrier effects of MPs in the aquatic food chain. This study evaluated the influences of polystyrene MPs on the trophic transfer and biotoxicity of fluoxetine in a simple food chain composed of brine shrimp (Artemia nauplii) and zebrafish (Danio rerio). The finding reveals that carrier effects of MPs enhanced the accumulation of waterborne fluoxetine in brine shrimp, but suppressed that in zebrafish due to the distinct retention times. The accumulated fluoxetine in shrimp was further transferred to fish through the food chain, which was alleviated by MPs due to their cleaning effects. In addition, the specific neurotransmission biotoxicity in fish induced by fluoxetine was mitigated by MPs, whilst the oxidative damage, apoptosis, and immune responses in zebrafish were reversely enhanced by MPs due to the stimulating effect. These findings highlight the alleviating effects of MPs on the trophic transfer and specific biotoxicity of fluoxetine in the food chain, providing new insights into the carrier effects of MPs in aquatic environments in the context of increasing global MP pollution.


Assuntos
Artemia , Fluoxetina , Cadeia Alimentar , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fluoxetina/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Artemia/efeitos dos fármacos
10.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565017

RESUMO

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Assuntos
Antibacterianos , Cadeia Alimentar , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Poluentes Químicos da Água , Animais , Oxitetraciclina/toxicidade , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Polipropilenos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Penaeidae/microbiologia , Penaeidae/efeitos dos fármacos , Muramidase/metabolismo
11.
J Hazard Mater ; 470: 134171, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569339

RESUMO

In lake ecosystems, pelagic-benthic coupling strength (PBCS) is closely related to foodweb structure and pollutant transport. However, the trophic transfer of antibiotics in a benthic-pelagic coupling foodweb (BPCFW) and the manner in which PBCS influences the trophic magnification factor (TMFs) of antibiotics is still not well understood in the whole lake. Herein, the trophic transfer behavior of 12 quinolone antibiotics (QNs) in the BPCFW of Baiyangdian Lake were studied during the period of 2018-2019. It was revealed that 24 dominant species were contained in the BPCFW, and the trophic level was 0.42-2.94. Seven QNs were detected in organisms, the detection frequencies of ofloxacin (OFL), flumequine (FLU), norfloxacin (NOR), and enrofloxacin (ENR) were higher than other QNs. The ∑QN concentration in all species was 11.3-321 ng/g dw. The TMFs for ENR and NOR were trophic magnification, while for FLU/OFL it was trophic dilution. The PBCS showed spatial-temporal variation, with a range of 0.6977-0.7910. The TMFs of ENR, FLU, and OFL were significantly positively correlated with PBCS. Phytoplankton and macrophyte biomasses showed indirect impact on the TMFs of QNs by directly influencing the PBCS. Therefore, the PBCS was the direct influencing factor for the TMFs of chemicals.


Assuntos
Antibacterianos , Monitoramento Ambiental , Cadeia Alimentar , Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Quinolonas , China
12.
Nat Commun ; 15(1): 1988, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480718

RESUMO

The prevalence and intensity of marine heatwaves is increasing globally, disrupting local environmental conditions. The individual and population-level impacts of prolonged heatwaves on marine species have recently been demonstrated, yet whole-ecosystem consequences remain unexplored. We leveraged time series abundance data of 361 taxa, grouped into 86 functional groups, from six long-term surveys, diet information from a new diet database, and previous modeling efforts, to build two food web networks using an extension of the popular Ecopath ecosystem modeling framework, Ecotran. We compare ecosystem models parameterized before and after the onset of recent marine heatwaves to evaluate the cascading effects on ecosystem structure and function in the Northeast Pacific Ocean. While the ecosystem-level contribution (prey) and demand (predators) of most functional groups changed following the heatwaves, gelatinous taxa experienced the largest transformations, underscored by the arrival of northward-expanding pyrosomes. We show altered trophic relationships and energy flux have potentially profound consequences for ecosystem structure and function, and raise concerns for populations of threatened and harvested species.


Assuntos
Ecossistema , Cadeia Alimentar , Oceano Pacífico , Animais
13.
Proc Biol Sci ; 291(2019): 20232564, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531400

RESUMO

Phytoplankton are photosynthetic marine microbes that affect food webs, nutrient cycles and climate regulation. Their roles are determined by correlated phytoplankton functional traits including cell size, chlorophyll content and cellular composition. Here, we explore patterns of evolution in interrelated trait values and correlations. Because both chance events and natural selection contribute to phytoplankton trait evolution, we used population bottlenecks to diversify six genotypes of Thalassiosirid diatoms. We then evolved them as large populations in two environments. Interspecific variation and within-species evolution were visualized for nine traits and their correlations using reduced axes (a trait-scape). Our main findings are that shifts in trait values resulted in movement of evolving populations within the trait-scape in both environments, but were more frequent when large populations evolved in a novel environment. Which trait relationships evolved was population-specific, but greater departures from ancestral trait correlations were associated with lower population growth rates. There was no single master trait that could be used to understand multi-trait evolution. Instead, repeatable multi-trait evolution occurred along a major axis of variation defined by several diatom traits and trait relationships. Because trait-scapes capture changes in trait relationships and values together, they offer an insightful way to study multi-trait variation.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Clorofila , Fotossíntese , Cadeia Alimentar
14.
Bull Environ Contam Toxicol ; 112(3): 47, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460017

RESUMO

Riparian tetragnathid spiders are used as biosentinels of aquatic contamination because they are specialized feeders of aquatic emergent insects and are also prey items for terrestrial predators (e.g., birds). Analysis of both trophic position (e.g., stable nitrogen isotopes) and contaminant concentrations are needed to utilize tetragnathids as biosentinels, which can present challenges when collecting enough biomass to reach analytical detection limits, due to their relatively small size. The purpose of this study was to investigate the impacts of a controlled diet source on spider biomass, egg laying and stable isotope values (δ13C and δ15N). Diet significantly influenced the biomass and egg laying of tetragnathids, with some spiders losing up to 50% of their biomass in a single egg-laying event. δ13C had a faster turnover rate in the whole-body of spiders compared to legs, which is important, as spider legs are presently used as surrogates for whole-body δ13C values.


Assuntos
Aranhas , Animais , Biomassa , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Dieta
15.
Emerg Infect Dis ; 30(4): 795-799, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526241

RESUMO

Uncommon Salmonella Infantis variants displaying only flagellar antigens phenotypically showed identical incomplete antigenic formula but differed by molecular serotyping. Although most formed rough colonies, all shared antimicrobial resistances and the presence of usg gene with wild-type Salmonella Infantis. Moreover, they were undistinguishable wild-type Salmonella Infantis by whole-genome sequencing.


Assuntos
Cadeia Alimentar , Aves Domésticas , Animais , Itália/epidemiologia , Salmonella/genética , Sorotipagem
16.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460143

RESUMO

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Assuntos
Cadeia Alimentar , Metais Terras Raras , Herbivoria , Plantas , Solo , Alface
17.
Sci Total Environ ; 924: 171677, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479521

RESUMO

Invertebrates are primary contributors to fluxes of nutrients, energy, and contaminants in terrestrial food webs, but the trophodynamic of contaminants in invertebrate food chains is not fully understood. In this study, occurrence and biomagnification of persistent organic pollutants (POPs) were assessed in detritivorous, phytophagous, and predatory invertebrate food chains. Detritivorous species (earthworm and dung beetle) have higher concentrations of POPs than other species. Different composition patterns and biomagnification factors (BMFs) of POPs were observed for invertebrate species. Negative correlations were found between BMFs and log KOW of POPs for detritivorous and most phytophagous species. In contrast, parabolic relationships between BMFs and log KOW were observed in snails and predatory species, possibly attributed to the efficient digestion and absorption of diet and POPs for them. Bioenergetic characteristics are indicative of the biomagnification potential of POPs in terrestrial wildlife, as suggested by the significant and positive correlation between basal metabolic rates (BMRs) and BMFs of BDE 153 for invertebrates, amphibians, reptiles, birds, and mammals. The estimations of dietary exposure suggest that the terrestrial predators, especially feeding on the underground invertebrates, could be exposed to high level POPs from invertebrates.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Poluentes Orgânicos Persistentes , Bioacumulação , Monitoramento Ambiental , Invertebrados/metabolismo , Mamíferos/metabolismo , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 924: 171660, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490428

RESUMO

Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Cadeia Alimentar , Nanoestruturas/toxicidade , Estado Nutricional
19.
Environ Sci Technol ; 58(13): 6007-6018, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513264

RESUMO

Knowledge gaps in mercury (Hg) biomagnification in forest birds, especially in the most species-rich tropical and subtropical forests, limit our understanding of the ecological risks of Hg deposition to forest birds. This study aimed to quantify Hg bioaccumulation and transfer in the food chains of forest birds in a subtropical montane forest using a bird diet recorded by video and stable Hg isotope signals of biological and environmental samples. Results show that inorganic mercury (IHg) does not biomagnify along food chains, whereas methylmercury (MeHg) has trophic magnification factors of 7.4-8.1 for the basal resource-invertebrate-bird food chain. The video observations and MeHg mass balance model suggest that Niltava (Niltava sundara) nestlings ingest 78% of their MeHg from forest floor invertebrates, while Flycatcher (Eumyias thalassinus) nestlings ingest 59% from emergent aquatic invertebrates (which fly onto the canopy) and 40% from canopy invertebrates. The diet of Niltava nestlings contains 40% more MeHg than that of Flycatcher nestlings, resulting in a 60% higher MeHg concentration in their feather. Hg isotopic model shows that atmospheric Hg0 is the main Hg source in the forest bird food chains and contributes >68% in most organisms. However, three categories of canopy invertebrates receive ∼50% Hg from atmospheric Hg2+. Overall, we highlight the ecological risk of MeHg exposure for understory insectivorous birds caused by atmospheric Hg0 deposition and methylation on the forest floor.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Cadeia Alimentar , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Florestas , Invertebrados , Aves , Isótopos , Isótopos de Mercúrio/análise
20.
Environ Sci Technol ; 58(14): 6370-6380, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38497719

RESUMO

The discovery of the significant lethal impacts of the tire additive transformation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on coho salmon has garnered global attention. However, the bioaccumulation and trophic transfer of tire additives and their transformation products (TATPs) within food webs remain obscure. This study first characterized the levels and compositions of 15 TATPs in the Pearl River Estuary, estimated their bioaccumulation and trophic transfer potential in 21 estuarine species, and identified priority contaminants. Our observations indicated that TATPs were prevalent in the estuarine environment. Eight, six, seven, and 10 TATPs were first quantified in the shrimp, sea cucumber, snail, and fish samples, with total mean levels of 45, 56, 64, and 67 ng/g (wet weight), respectively. N,N'-Diphenyl-p-phenylenediamine (DPPD) and N,N'-bis(2-methylphenyl)-1,4-benzenediamine (DTPD) exhibited high bioaccumulation. Significant biodilution was only identified for benzothiazole, while DPPD and DTPD displayed biomagnification trends based on Monte Carlo simulations. The mechanisms of bioaccumulation and trophodynamics of TATPs could be explained by their chemical hydrophobicity, molecular mass, and metabolic rates. Based on a multicriteria scoring technique, DPPD, DTPD, and 6PPD-Q were characterized as priority contaminants. This work emphasizes the importance of biomonitoring, particularly for specific hydrophobic tire additives.


Assuntos
Cadeia Alimentar , Fenilenodiaminas , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...